Part I : Current and Projected
Magnetic RAM Applications
1.0 Overview of Possible MRAM Properties for Applications
- 1.1 Memory Hierarchy
- 1.2 Comparison of Parameters of Various NV Memory Technologies
- 1.2.1 Comparison of Parameters over time in Various NV Memory
Technologies
- 1.2.2 Comparison of Parameters of Various MRAM Technologies
- 1.3 Overview of Hybrid MRAM/CMOS Logic Circuits
- 1.4 Comparison of Various NVM Technologies
- 1.5 Overview of Applications for Embedded Non-Volatile Memories in
MCUs (Renesas)
- 1.6 Near Future Applications for Embedded p-STT-MRAM (Toshiba)
- 1.7 Energy Comparison of SRAM & TAS-MRAM in L2-Cache (LIRMM-UMR
CNRS, Crocus)
- 1.8 Potential for STT-MRAM Success in Mobile Computing Systems
(Qualcomm)
2.0 MRAM Replacements for Embedded SRAM Cache in MPU
- 2.1 Overview of MRAM in Cache Memory
- 2.2 STT-MRAM for L2/L3 Cache in Low Power Systems (Tohoku U.)
- 2.3 System Level Study of STT-MRAM in L1 Data Cache (U. Computer de
Madrid)
- 2.4 Using PMA STT-MRAM for Cache Design (Beihang Univ.)
- 2.5 Racetrack STT MRAM Memory for Cache Applications (Broadcom)
- 2.6 Advantages of MRAM Embedded as Cache in Multiprocessors (U. of
Montpellier)
- 2.7 Reducing Total Power of an LLC using PMA STT-MRAM (Toshiba)
- 2.8 Field Driven STT-MRAM to Reduce Latency & Energy in L1 Cache (U.
of Rochester)
- 2.9 Fast 1Mb 6T2MTJ Cell STT-RAM with Background Write (Tohoku U.,
NEC)
- 2.10 1Mb PMA STT-MRAM Cache Memory With Low Active Power (Toshiba)
- 2.11 A 1 Mb STT-MRAM For NV SRAM with 1.5ns Wake-up (Tohoku U.)
- 2.12 An STT-MRAM Circuit for L2 SRAM cache (Toshiba)
- 2.13 Fast 1T1MTJ Cache Using Asymmetric Write Characteristics of Cell
(Purdue U.)
- 2.14 Technique to Reduce Write Energy in an STT-RAM Cache (Kobe U.)
- 2.15 Memory for Large L3 Cache (U. of Maryland)
- 2.16 Low Power MRAM to Replace SRAM (Qualcomm, IMEC)
3.0 TCAM Applications
- 3.1 Two NV CAM Cells Configured with MTJ and CMOS Transistors
(Northeastern U.)
4.0 Big Memory Applications for MRAM
- 4.1 State Restricted MLC STT-MRAM in Big Memory Applications (U. of
Pittsburgh)
- 4.2 RAID Storage Systems (Everspin)
- 4.3 MRAM Cache in SSD (Everspin)
- 4.4 MRAM to Replace DRAM as Main Memory (Penn State Univ.)
5.0 Adaptive Processing
- 5.1 Variable NV Memory Arrays for Adaptive Computing (Toshiba)
- 5.2 An Asymmetric Differential STT-RAM Cell Structure (U. of
Pittsburgh)
6.0 Automotive Applications
- 6.1 Automotive Temperature MRAM in Motorcycles
- 6.1.1 MRAM using in Motorbike Engine Control Unit (Everspin)
- 6.1.2 Engine Control Units at Extended Temperature (Everspin)
7.0 Medical Applications
- 7.1 Healthcare Systems
- 7.1.1 "Store Mostly" Health Care Systems (Kobe U., LEAP)
- 7.2 Biometric Systems
- 7.2.1 Energy Efficient STT-MRAM Sparce Data Face Recognition System (Nanyang
TU)
8.0 Industrial Applications
- 8.1 VME Board Critical Data Storage (Everspin)
- 8.2 1Mb MRAM with Quad SPI Interface (Everspin)
9.0. Mobile Processor MRAM Applications
- 9.1 Data Allocation Hybrid Scratch Pad Memory for Mobile Computing
(Pace U, U Kentucky, Beihang U, TSU, Florida Intl U.,
Auburn U., Huazhong U.)
- 9.2 Fast, Low Current STS in a p-MTJ for Cache in Mobile Processors
(Toshiba)
- 9.3 Using Hybrid Memory for Resource Allocation in Mobile Cloud
Systems (Pace U.)
- 9.4 Fast Mobile Processor with Nonvolatile/Volatile Hybrid Cache
Memory(Toshiba)
- 9.5 A DRAM/MRAM hybrid memory design for Fast Mobile CPU (Toshiba)
10.0 Space and Military Applications
- 10.1 Space Applications for Radiation Induced Soft Error Immunity (Everspin)
- 10.2 Radiation Hardened FPGAs using MTJ Spintronic Devices ( Spintec,
UJF)
11.0 Smart Cards
- 11.1 Smart Card Chips with MLU and MRAM (Crocus, ARM)
- 11.2 MCU with Embedded NV MRAM Memory and MTJ Logic (Crocus)
12.0 Spin-Torque Sensors in Embedded Cache Memory
- 12.1 Spin-Torque Sensors in MRAM Cache Memory (Purdue U.)
- 12.2 Spin-Torque Sensing for Energy Reduction in on-chip Cache (Purdue
U,)
- 12.3 3-Terminal MTJ MCU for Low Standby Power Sensor Applications(NEC,
TohokuU)
13.0 MRAMs in Neural Applications
- 13.1 Overview of MRAMs in Neural Net Applications
- 13.2 STT MRAM as a Synapse for Neuromorphic Systems (U. Paris-Sub, CEA,
Beihang U.)
- 13.3 Using STT MRAM as a Stochastic Memristive Synapse
(U. Paris-Sud, CNRS, CEA, LIST)
- 13.4 Monte-Carlo Simulations of STT-MRAM Neuro-Chips (U. of Paris-Sud)
14.0 MRAMs in Cyber - Security Applications
- 14.1 Optimizing Emerging NVM as PUFs With MRAM Example (NanyangTU,
PurdueU)
- 14.2 A Geometry-Based Magnetic PUF Integrated in CMOS (U. of South
Florida)
- 14.3 STT-MRAM-based PUF with Multiple Response Bits per Cell (Nanyang
Tech. U.)
- 14.4 New Design of STT-MRAM-based PUFs (Politec. di Torino)
- 14.5 Extracting PUFs from STS Characteristics in MTJ (Toshiba)
- 14.6 Geometry-based MRAM Physically Unclonable Function - PUF (U. of
South Florida)
- 14.7 An STT-MRAM Based Physical Unclonable Function (PUF) (Nanyang TU,
Purdue U).
- 14.8 A Random Number Generator Using STT MRAM (Purdue U.)
15.0 Integration of MRAM and Logic
- 15.1 Low Power Processor Based on "Normally-Off" Architecture Circuits
(Toshiba)
- 15.2 Various MRAM Devices for Future Integrated Spintronics CMOS
(UCLA)
- 15.3 Motion Vector Prediction Circuit Using 90 nm MTJ/MOS Circuitry
(Tohoku U., NEC)
- 15.4 Non-Volatile Logic and MRAM Model Using p-STT-MRAMs
- 15.5 STT-Logic Configuration of 2-input XOR Using MTJ (U. of S.
Florida, Everspin)
- 15.6 MRAM Logic-in-Memory architecture (TU Wien)
- 15.7 Cell-Base Design Flow for MTJ/MOS Hybrid Logic Circuits (Tohoku
U., NEC)
16.0 MTJ Logic Circuits (Shift Resister, CAM, Latch, FlipFlop,
Reconfigurable Logic)
- 16.1 MRAM backed SRAM Cell for NV Dynamically Reconfigureable FPGA (U.
of Toronto)
- 16.2 Fast, Low Energy, Masking Error Immune PentaMTJ-Based TCAM (Aligarh
Muslim U)
- 16.3 Drawbacks of MTJ-based Resistive Computation (Univ. of Calif.,
San Diego)
- 16.4 A Complementary Polarizer STT On-Chip Cache (Purdue Univ.)
- 16.5 Local STT-MRAM Array for Zero Sleep Power Systems
(Singapore UTD, Reuters, York U.)
- 16.6 STT-MRAM Low Power Synchronous NV Logic (Singapore U. of Tech &
Design)
- 16.7 NV Flip-Flop Based on Spin Orbit Torque Coupling (SPINTEC, CEA)
- 16.8 NV MTJ Flip-Flop Using Two-Phase Write (NUS)
- 16.9 Power-Gated MPU Using STT MTJ NVFF with 3us Entry/Exit Delay
(Tohoku U., NEC)
- 16.10 Simulation Study of a Non-Volatile Magnetic Flip-Flop (TU Wien)
- 16.11 Reliability Simulation of MTJ-based Logic Gates Integrated in
CMOS (TU Wien)
- 16.12 Magnetic Full Adder Circuit Based on PMA STT-MRAM (IEF, U.
Paris-Sud)
- 16.13 Magnetic Flip-Flop with Perpendicular MTJ MRAM (IEF, U. Paris-Sud,
CNRS)
- 16.14 Very Low Power MTJ Flip-Flop using Checkpointing & Power Gating
(U. Paris-Sud)
- 16.15.2 40 nm MTJ Flip-Flop using Perpendicular MTJ MRAM
(IEF, U. Paris,Sud, CNRS)
- 16.16 Synchronous Full-Adder Using Complementary STT-MRAM Cells
(IEF, U. of Paris-Sud, UMR, CNRS, Aix-Marseille U., IM2NP-UMR CNRS)
- 16.17 MTJ-based Logic-in-Memory (LIM) Architecture (Tohoku U.)
17.0 Novel Intrinsic MTJ Logic Circuits
- 17.1 STT-MTJ in Intrinsic Logic-in-Memory
- 17.1.1 MRAM-Based High Performance Stateful Logic (TU Wein)
- 17.1.2 Reliability and Comparison of Implication and Reprogram MTJ
Logic Gates (TU Wien)
- 17.1.3 Using STT-MTJ for Intrinsic Logic-in-Memory (TU Wien)
- 17.2 Complementary Magnetic Tunnel Junction Logic (CMAT)
- 17.2.1 New Complementary MTJ Logic Family (Northwestern U.)
18.0 GPU With Integrated STT-MRAM
- 18.1 GPU with Integrated STT-MRAM and Hybrid SRAM/STT-MRAM (U. of
Florida)
19.0 Integrated MTJ Sensors
- 19.1 Integration of ASIC Controller & Spintronic Sensor Array (Intl.
Iberian Nanotech Inst.)
- 19.2 Magnetic Interlayer Transmission Through PMA MTJ for 3D
Integration (NTHU, ITRI)
20 MRAM Announced and Planned Production Lines
21.0 Demonstrations of Operational STT MRAM Chips
- 21.1 64 Mb P-STT-MRAM SPI Interface Samples in 55 nm CMOS Process
(Avalanche)
- 21.2 8Mb STT-MRAM with Current-Mode Sense Amp (Samsung, SungkynkwanU).
- 21.3 1Mb eSTT-MRAM in 65 nm node with 3.3 ns access time (Toshiba)
- 21.4 8Mb Perpendicular STT-MRAM Prototype with sub-5ns Write
(TDK-Headway)
- 21.5 8Mb 65 nm STT-MRAM with 0.38V Operation (Kobe U., Stanford U.,
LEAP)
- 21.6 Device Considerations of 90 nm CMOS 64Mb DDR3 ST-MRAM (Everspin)
- 21.7 1.6 GT/s 64Mb DDR3 ST-MRAM Operating Characteristics (Everspin)
- 21.8 8MB STT-MRAM Operational Test Chip (TDK-Headway Technologies,
IBM)
|
Part II. Modern MRAM
Technologies 1.0 Background on Field Programmable MTJ MRAM
Technologies
- 1.1 An overview of Current MRAM Scaled Technologies (AIST,
Osaka U., CREST, Toshiba)
- 1.2 An Overview of : STT-MRAM, DW Motion MRAM and SOT MRAM (Tohoku U.)
2.0 Spin Transfer Torque (STT) MRAM Device and Design
- 2.1 Introduction to Spin Transfer Torque (STT) MRAM technology
- 2.2 Reconfigurable MRAM Hybrid Codesign in Scaled
Technology(Beihang U, U of Paris-Sud)
- 2.3 4F2 STT MRAM Cell with Vertical GAA Select Device (Indian Inst. of
Tech Rookkee)
- 2.4 Embedded STT-MRAM for Energy Efficient Mobile Systems, (Qualcomm)
- 2.5 Scaling Challenges for Sub-20 nm STT-MRAM Memory (IMEC)
- 2.6 Spin-Based Silicon Technology Model and Cell Proposal (TU Wien)
- 2.7 Comparison of Four MTJ Stacks for Device & Circuit Characteristics (Vellore
IT U)
- 2.8 Methods for Improved Density & Speed of MLC STT-RAM Cache(U. of
Pittsburgh)
- 2.9 Designing STT-MRAM for Embedded Memory in a CMOS Process (Georgia
Tech)
- 2.10 A 90 nm 1Mb STT-MRAM for L2/L3 Cache Memory (Tohoku U.)
- 2.11 Simulation of Information Storage Mechanism in STT-MRAM (Huazhong U.
of S&T)
- 2.12 Minimizing Reference Resistance Distribution in STT-MRAM(A*STAR, NUS)
3.0 STT MRAM Circuit Techniques
- 3.1 1T2MTJ STT-MRAM Cell Array with Reference Voltage Generator (Tohoku
U)
- 3.2 Dynamic Reference Sensing Method for Scaled STT-MRAM (Beihang U., U.
Paris-Sud)
- 3.3 Current-Mode Sense Amp for 8Mb STT-MRAM (Samsung, SungkynkwanU).
- 3.4 65 nm STT-MRAM with 0.38V Operation (Kobe U., Stanford U., LEAP)
- 3.5 Reference Study and New Reference Method for STT-MRAM (Yonsei U,
Qualcomm)
- 3.6 Self Terminated Write Driver with Data Write Completion Monitoring
(Tohoku U.)
- 3.7 Variation Tolerant Sensing for Advanced Node STT MRAM (BehangU, U.
Paris- Sud
- 3.8 Dynamic Reference to Improve MRAM Sensing Reliability (Beihang U.)
- 3.9 STT-MRAM Sensing Circuit with Self-Body Biasing (Yonsei Univ.,
Qualcomm)
- 3.10 Offset Canceling Triple State Sense Circuit for STT-MRAM (Yonsei U.,
Qualcomm)
- 3.11 Four Terminal MRAM Delay Control Circuit (NEC, Tohoku U.)
- 3.12 Circuit for Minimizing Reference Resistance in an STT-MRAM (A*STAR,
NUS)
- 3.13 Read Stability and Write Ability of Fast Access STT-MRAM (Tohoku
University)
- 3.14 Novel Circuits for Building a 16 kb STT-MRAM (Xi'dian
U., U. of Paris-Sud, Beihang U)
- 3.15 Split Path Sensing Circuit for STT MRAM (Yonsei U., Qualcomm)
- 3.16 Offset-Canceling Triple State Sensing Circuit for STT-RAM (Yonsei U,
Qualcomm)
- 3.17 Reference Calibration Technique for Body-Voltage Sense Circuit (U.
of Calif. LA)
- 3.18 Differential STT-RAM Cell Structure with Two Modes (U. of
Pittsburgh).
- 3.19 STT-MRAM bit cell with ROM Overlay (Purdue University)
- 3.20 STT-MRAM Sensing Circuit with Self Body Biasing (Yonsei U.,
Qualcomm)
- 3.21 Improved Endurance using Balanced Write Path for 40nm 1Mb STT-MRAM
(TSMC)
4.0 STT MRAM Device, Process and Process Techniques
- 4.1 P-MTJ Stack Compatible with 420 C Anneal CMOS BEOL Process (Tohoku
U.)
- 4.2 Oxygen Showering for Damage Suppression of sub-20 nm p-MTJ(TohokuU,
Samsung)
- 4.3 Self Aligned 2 Step RIE Process for Patterning MTJ on 300 mm Wafers
(Applied Mat.)
- 4.4 1T1MTJ STT-MRAMWith FinFET Access Transistors (U. of Southern Calif.)
- 4.5 Process Method for Scalable STT-MRAM With Reduced Process Damage
(LEAP)
- 4.6 New Reaction Etching for Magnetic Material for MRAMs (Tokyo Electron,
Tohoku U.)
- 4.7 FinFET based STT-MRAM Bit-Cell (Birla IT)
- 4.8 Low Temperature Stability of MTJ Patterned by RIE (U. of Calif. San
Diego)
- 4.9 Improved Switching Margin with 20 nm iPMA MTJ Structure (Samsung)
5.0 Issues with STT MRAM
- 5.1 Read Disturb and Readability in an STT MRAM
- 5.1.1 Pulsed Read for 1T1R STT-MRAM to Reduce Read Disturb (Georgia Inst.
of Tech.)
- 5.1.2 3-Terminal MTJ Memory Cell with Read Disturb Immunity (U. of
Toronto)
- 5.1.3 Time Differential Sense Amp for 40 nm STT MRAM (Infineon, TU
Munich)
- 5.3 Decreasing Switching Current Density and Write Power in an STT-MRAM
- 5.3.1 Low Vth STT-RAM Select Transistor (U.Virginia, Amer.U.Beirut,
Intel)
- 5.3.2 Techniques for Lowering Write Power in STT-MRAMs (Karlsruhe IT)
- 5.3.3 Using Current Asymmetry in STT-MRAM to Reduce Write Power (Karlsruhe
IT)
- 5.3.4 Low Energy Write STT-MRAM With Dynamic Data Encoding(Penn
State U, Qualcomm)
- 5.3.5 Low Current Probabilistic Write for STT-MRAM(U
Calif. SD, Qualcomm, George MasonU)
- 5.4 Source Degeneration Effect and Current Asymmetry Issue in STT MRAM
- 5.4.1 Overview of Source Degeneration and Current Asymmetry in STT-MTJ
- 5.4.2 Reduced Power and Improved Margins Using Asymmetric FET
(Purdue, Penn St)
- 5.4.3 STT-RAM Design to Read and Write at Similar Voltages
(Spintec, CEA-INAC, Crocus)
- 5.4.4 Multi-Terminal MRAMs to Compensate for MTJ Asymmetry Effects
(Purdue U.)
- 5.5 Thermal Stability Issues in STT MRAM
- 5.5.1 Statistical Study of STT-MRAM Thermal Stability (Infineon)
- 5.6 Current vs. Voltage Drive Write
- 5.6.1 STT-MRAM Write Using Current Sources to Reduce Energy (IBM, Purdue)
6.0 Multiple Level/State STT-MRAM
- 6.1 MLC STT-MRAM Using Serial & Parallel Cell (Penn State U, Qualcomm)
- 6.2 Fast Read 1T2MTJ MLC STT-MRAM with Stacked Perpendicular MTJ (LEAP)
7.0 Domain Wall STT MRAM Cell Technology
- 7.1 Domain-Specific Multicore Computing Using Spin Memory (Purdue U. and
Intel)
- 7.2 Multi-Level MRAM using Domain Wall Shift for a High Density Cache
(Purdue U.)
- 7.3 FeCo-Oxide as a Magnetic Coupling Layer in an mLogic Cell (Carnegie
Mellon U.)
- 7.4 Multi-Level MRAM Cell Based on Domain Wall Shift Storing 2b per Cell
(Purdue U.)
- 7.5 DW Motion MRAM With PMA (Renesas, Tohoku U., NIMSA Tsukuba)
- 7.6 Domain Wall Memory with Shift Based Writes for Use in a Cache
Hierarchy (Purdue U.)
8.0 Racetrack Type Domain Wall Memory-Logic
- 8.1 Multilane Racetrack with Compression & Independant Shift
(U.Pittsburgh, VMware)
- 8.2 Logic-in-Memory Operation in PMA Domain Wall Nanowire Devices (Kyushu
U.)
- 8.3 Racetrack STT MRAM Memory for Cache Applications (Broadcom)
- 8.4 Domain-Wall Nanowire Memory for Memory and Logic (Nanyang TU)
- 8.5 STT Driven Magnetically Coupled DW Shift Register memory (Carnetie
Mellon U.)
- 8.6 Magnetic Adder based on a Vertical Racetrack Memory
(U. of Paris-Sud, UMR8622m CNRS)
9.0 Three Terminal STT-MRAM Mechanism and Cells
- 9.1 Compact Model of 3 Terminal MRAM Switching (SPINTEC,
UNR, INAC, CEA/CNRS/UJF)
- 9.2 Complementary Polarizer Cell to Improve Sense Margin and Read Disturb
(Purdue U.)
10.0 MRAM with Spin Transfer Write and Perpendicular Anisotropy
- 10.1 Potential for Reduction of Energy Consumption in P-MRAM (Toshiba)
- 10.2 Sub 20 nm p-MTJ Stack for Standalone and Fast Embedded Memory (IMEC)
- 10.3 Challenges for Developing Terra-bit p-STT MRAM (Hanyang U., Samsung)
- 10.4 Embedded STT-MRAM Cache Memory using p-MTJ to Reduce Power (Toshiba)
- 10.5 Switching Current Dispersion from Inhomogeneity of PMA
(TsinghuaU., PekingU, CICQM)
- 10.6 PMA STT-MRAM with sub 5 ns Write and No Degradation at Temperature
(NVMTS)
- 10.7 Microwave Properties and Damping in Pt/Co Multilayers with PMA
(INRM, Korea U.)
- 10.8 Switching Properties in MTJ with Interfacial PMA (U. of Calabria, U.
Messina)
- 10.9 Scaling of In-Plane and PMA MTJ Using a Physics-Based Model (Univ.
of Minnisota)
- 10.10 8Mb Perpendicular STT-MRAM Prototype with sub-5ns Write
(TDK-Headway)
- 10.11 Multi-Level Perpendicular MTJ with Multiple Barrier Free Layers
(LEAP)
- 10.12 <1ns Switch & <20nm Scaling (SPINTEC, UMR, CEA/DSM/INAC-CNRS/UJF-G-INP,
Crocus,
- 10.13 A Top Pinned PMA MTJ with Counter Bias Field to Suppress Stray
Field (LEAP)
- 10.14 Optimization of Co/Pd Multilayer-based Reference Layers in p-MTJ
(IBM)
11.0 Topics and Issues in Perpendicular MTJ MRAM
- 11.1 Scaling of Perpendicular MTJ MRAM
- 11.1.1 Scaling of i-PMA STT-MRAM below 15 nm with Damage-less Patterning
(Samsung)
- 11.2 Process Related Factors in i-PMA STT MRAM
- 11.2.1 Embedded Perpendicular STT-MRAM Made After BEOL Process (Toshiba)
- 11.3 Thermal Stability Factor in Perpendicular CoFeB/MgO MTJ MRAM
- 11.3.1 Area Dependence of Thermal Stability in p-STT MRAM (LEAP)
- 11.3.2 STS of pMTJ CoFeB-Based Tunnel Junctions with High Thermal
Tolerance (Sony)
- 11.4 Co/Pd Multilayer Reference layers in p-MTJ (IBM-Headway Alliance and
IBM)
- 11.5 In-Plane vs. Perpendicular Magnetization
- 11.5.1 Roadmap of Planar & Perpendicular STT-MRAM (U. of Minnesota, NUS)
12.0 Voltage Controlled (VCMA) PMA MRAM
- 12.1 Low Power Write and Sense Amp for Fast VCMA MRAM (UCLA)
- 12.2 Voltage Controlled Magnetic Anisotropy MeRAM Cell (U. of Calif. LA,
Inston)
- 12.3 Voltage Driven Magnetization Switching (AIST, Osaka U.)
13.0 Simulation and Modeling of Spin Write MRAMs
- 13.1 Optimized Resistance Characterization Technique for MRAM (A*STAR)
- 13.2 Circuit-Level Model for Temperature Sensitive Read/Write in MTJ
(Ewha Womans U)
- 13.3 Analytical Macrospin Model of STT-MTJ Switching Time (U. Paris-Sud)
- 13.4 Integration of STT-MRAM Model into CACTI Simulator (Politec, di
Torino)
- 13.5 Switching Current Dispersion from Inhomogeneity of PMA(TsinghuaU.,
PekingU CICQM)
- 13.6 Survey of Models of MTJ (U. of Toronto)
- 13.7 Modeling MTJ with Vertical Access Devices for Mixed Mode Simulations
(IIT Roorkee)
- 13.8 Study of Electrical Simulator Models for Spintronic Devices (INAC-SPINTEC)
- 13.9 Microstructure Processing and Simulations of MTJ MRAM (IBM)
- 13.10 Modeling of Spin-Based Electronic Devices (TU Wien)
- 13.11 Unified Model for Switching Behavior of MTJs (Ewha Womans
University)
- 13.12 Model for TDDB of MgO in MTJ-MRAM Cell (Purdue)
- 13.13 SPICE Compact Model for Simulating Hybrid MTJ/CMOS Circuits (Purdue
U.)
- 13.14 Simulation for STT-MRAM with Multiferroic Tunnel Junctions (Purdue
U.)
- 13.15 Multi-level STT MRAM Cell Based on Stochastic Switching (U. Paris-Sud)
- 13.16 Modeling of Stochastic STT Write in MTJ (U. Paris-Sud,
UMR, SPINTEC, CEA/CNRS)
- 13.17 Simulated Characteristics of Lateral TMR Memory Cell (Peking U.,
Tsinghua U.)
14.0 Test, Yield and Reliability Issues for STT- MRAM
- 14.1 4-Point Probe Ramped Voltage Stress for STT-MRAM MgO TJ (IMEC, KU
Leuven)
- 14.2 Unified Design Framework to Enhance Yield of STT-MRAM (Purdue Univ.)
- 14.3 Robustness Margin for Read/Write of STT-MRAM Cell (Polit. di Tornio)
- 14.4 Wafer Inductive Measure of STT Critical Current Density,
(Phys.-Tech Bundesanstalt, Intl. Iberian Nanotech Lab., INRM
Turin, AGH U. of Sci. and Tech., Bielefeld U., Singulus)
- 14.5 Yield and Reliability Techniques for Improving STT-MRAM Production (Beihang
U.)
- 14.6 Radiation Hardened Sensing Circuits for STT MRAM and Logic (U. of
Paris-Sud)
- 14.7 Soft Error Tolerant MRAM Latches (Sharif Univ. of Tech.)
- 14.8 Block-Level Reliability Estimation for STT-MRAMs (Politechnico di
Torino)
- 14.9 Read Disturb Circuit Detect Method in STT-MRAM (Karlsruhe IT)
- 14.10 Test Support for MRAM Cell Development Defect Monitors in a Lab
(IBM)
- 14.11 Heavy Ion Irradiation of Perpendicular Anisotropy CoFeB-MgO MTJ (JAXA)
- 14.12 OS-MLS codes for Multi-Bit Error Correction in STT-MRAM (Beihand
Univ.)
- 14.13 Advantages of Strong Error Correction for Unintended Bit-Flips (U.
of Minnesota)
- 14.14 Failure Mitigation Techniques for 1T-1MTJ STT-MRAM Cells (Purdue
U.)
- 14.15 Testing Resistive-Open Defects in TAS-MRAM
(Crocus, LIRMM, U. Montpellier, CNRS)
- 14.16 Reducing Read Disturb using Pulse Width Control for in-plane STT
MTJ (Avalanche)
- 14.17 Switching Failure From Transverse Domain Wall Formation in FL (TU
Wien)
- 14.18 TDDB of the MgO for an STT-MRAM (Purdue U.)
- 14.19 STT-MRAM in 65 nm LP-CMOS with Radiation Results (U. Albany,
Avalanche)
15.0 Spin Orbit Torque (SOT) Devices
- 15.1 Analysis of SOT-MRAM for On-Chip Cache Hierarchy (Karlsruhe Inst. of
Tech.)
- 15.2 Compact Model of Three Terminal SOT MTJ writing (Spintec)
- 15.3 Spin-Orbit Torque (SOT) MRAM Cell (U. of Calif. LA, Inston)
- 15.4 Compact MTJ Model for Spin Orbit Torque (SPINTEC, UMR,
INAC, CEA/CNRS/UJF)
- 15.5 SOT-MRAM Benefits Compared with SRAM in L1 and L2 Cache (Karlsruhe
IofT)
- 15.6 Rashba-Induced Spin Torque Switching
- 15.6.1 Using Rashba Effect for Write & Read in a Single FM Layer (NUS)
- 15.7 Spin Hall Effect With Spin Torque Switches
- 15.7.1 Dual Read/Write Ported Spin-Hall MRAM for On-chip Cache (Purdue
University)
- 15.7.2 Analog Readout Circuit for Use with Planar Hall-Effect MRAM (Bar-Ilan
U.)
- 15.7.3 Spin Hall Effect in Fast Current Mode Spin-Torque switches.
(Purdue U.)
- 15.7.4 Differential Spin-Hall Embedded MRAM (Purdue U.)
16.0 Thermal Assisted, Magnonic Write and Thermal Transport in MRAMs
- 16.1 Analysis of MTJ/CMOS Hybrid Cells Using TAS and STT(U.Montpellier)
- 16.2 Analysis of Resistive-Open Defects on TAS-MRAM Behavior (LIRMM,
Crocus)
- 16.3 TAS Programming in STT-MRAM Systems (LIRMM-UMR CNRS, Crocus)
- 16.4 Effect of Heating Current Polarity on TAS Switching in MRAMs (SPINTEC,
Crocus)
- 16.5 Thermally Activated VCMA MeRAM Cell (U. of Calif. LA, Inston)
- 16.6 Thermal Assisted MRAM Production (Crocus)
- 16.7 Logic Functions of TA-MRAMs (SPINTEC CEA-INAC/CRNS/UJF/G-INP,
Crocus)
- 16.8 TA-STT Magnetic Reversal of Uniaxial Nanomagnets in Energy Space (N.Y.Univ.)
- 16.9 Temperature Dependence of Jo for STT TA-MRAM using GdFeCo(Nagoya U,
NISRI
- 16.10 MTJ Storage & Logic Unit Using Thermally Assisted MRAM (Crocus,
SPINTEC)
- 16.11 Storing Data in Antiferromagnetic Layer Via Field-Cooling (Politechnico
di Milano)
- 16.12 Theory of Bidirectional Write Thermoelectric STT-MRAM Using
Magnonic Current
17.0 Vertical 3D MRAMs.
- 17.1 3D STT-MRAM Transistor-less Cell Array (U. of Wisconsin)
- 17.2 Dual Function STT-MRAM for Reliability and 3-D MLC
(U. Paris-Sud, CNRS, U. Beihang)
- 17.3 MRAMs in Cross-Point Arrays
- 17.3.1 Diode-MTJ Cross-Point Memory Using Unipolar Switching
(U.of Calif,Hitachi, Singulus)
18.0 Field Assisted Switching MRAMs
- 18.1 Electric Field Assisted Switching in MTJ
- 18.1.1 Electric Field Controlled Switching in PMA MRAM (A*STAR)
- 18.1.2 Reducing Latency in STT-MRAM Using Field Assisted Writing (U. of
Rochester)
- 18.1.3 Electrical Field Assisted Switching in MTJ (Polit.Bari,
CalabriaU, PerugiaU, MessinaU)
- 18.2 Field Assisted Toggle Mode Switching
- 18.2.1 Neutron Radiation Effect on Toggle Mode MRAM (LIRMM, U. de
Montpellier)
- 18.2.2 Write Current Self-Configuration Method (NTHU)
19.0 MTJ MRAM Materials and Device Research Issues
- 19.1 Straintronics Based MRAM for Data Storage (U. of Michigan)
- 19.2 Asymmetric Composite Free Layers for High Density STT-MRAM (Kyushu
U.)
- 19.3 Magnetic Field Dependence of Energy Barrier of p-Magnet (Korea U.,
Samsung)
- 19.4 Magnetic Properties of Thin Seed Layers of Ru & Hf on Co/Pt MLs
(IMEC, KU Leuven)
- 19.5 A Study of Coupled Spin Torque Nano Oscillators (U. of Virginia)
20.0 Graphene, Nanoribbons and Edge Conductors in Spin Devices
- 20.1 Graphene Based MTJ (Naval Research Lab)
|